UNIX/LINUX Lab

MCA- 208

SELF LEARNING MATERIAL

DIREC'I_'ORATE
OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY
MEERUT — 250 005,

UTTAR PRADESH (INDIA)

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be reproduced
or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior permission from the publisher.

Information contained in this book has been published by Directorate of Distance Education and has
been obtained by its authors from sources be lived to be reliable and are correct to the best of their
knowledge. However, the publisher and its author shall in no event be liable for any errors,
omissions or damages arising out of use of this information and specially disclaim and implied
warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

UNIX / LINUX LAB

e Write Shell Script for UNIX environment.

e Understanding of basic commands of UNIX administration, user authorization, grant of users
right and privileges, backup and recovery.

e Source Code Control System understanding Lex and Yacc, debugger tools (Lint, make etc.)

e Write program in C for Process Creation, Parent/Child process relationship, forking of process.
Inter Process Communication and socket programming implementation of exec system call,

pipe, semaphore and message queue.

Unit-1

Introduction
Introduction to Unix

UNIX is an operating system which was first developed in the 1960s, and has been
under constant development ever since. By operating system, we mean the suite of
programs which make the computer work. It is a stable, multi-user, multi-tasking system
for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows
which provides an easy to use environment. However, knowledge of UNIX is required
for operations which aren't covered by a graphical program, or for when there is no
windows interface available, for example, in a telnet session.

Types of UNIX

There are many different versions of UNIX, although they share common similarities.
The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

Here in the School, we use Solaris on our servers and workstations, and Fedora Linux
on the servers and desktop PCs.

The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the
programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to
programs and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user
types rm myfile (which has the effect of removing the file myfile). The shell searches the
filestore for the file containing the program rm, and then requests the kernel, through
system calls, to execute the program rm on myfile. When the process rm myfile has
finished running, the shell then returns the UNIX prompt % to the user, indicating that it
is waiting for further commands.

The shell

The shell acts as an interface between the user and the kernel. When a user logs in, the
login program checks the username and password, and then starts another program
called the shell. The shell is a command line interpreter (CLI). It interprets the
commands the user types in and arranges for them to be carried out. The commands
are themselves programs: when they terminate, the shell gives the user another prompt
(% on our systems).

The adept user can customise his/her own shell, and users can use different shells on
the same machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory
and pressing the [Tab] key, the tcsh shell will complete the rest of the name
automatically. If the shell finds more than one name beginning with those letters you
have typed, it will beep, prompting you to type a few more letters before pressing the
tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to
repeat a command, use the cursor keys to scroll up and down the list or type history for
a list of previous commands.

Files and processes
Everything in UNIX is either a file or a process.
A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running
compilers etc.

Examples of files:
a document (report, essay etc.)
the text of a program written in some high-level programming language

instructions comprehensible directly to the machine and incomprehensible to a casual
user, for example, a collection of binary digits (an executable or binary file);

a directory, containing information about its contents, which may be a mixture of other
directories (subdirectories) and ordinary files.

The Directory Structure

All the files are grouped together in the directory structure. The file-system is arranged
in a hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally

called root (written as a slash /)

= . =

| tmp || usr || var

| staff
L

ma51ik
#

—

i docs I pics .

In the diagram above, we see that the home directory of the undergraduate
student "ee51vn" contains two sub-directories (docs and pics) and a file

called report.doc.

The full path to the file report.doc is "/home/its/ugl/ee51vn/report.doc”

Starting an UNIX terminal

To open an UNIX terminal window, click on the "Terminal” icon from
Applications/Accessories menus.

Unix system organization (the kernel and the shell)

Both the Shell and the Kernel are the Parts of this Operating System. These Both Parts
are used for performing any Operation on the System. When a user gives his
Command for Performing Any Operation, then the Request Will goes to the Shell Parts,
The Shell Parts is also called as the Interpreter which translate the Human Program
into the Machine Language and then the Request will be transferred to the Kernel. So
that Shell is just called as the interpreter of the Commands which Converts the
Request of the User into the Machine Language.

Kernel is also called as the heart of the Operating System and the Every Operation is
performed by using the Kernel , When the Kernel Receives the Request from the Shell
then this will Process the Request and Display the Results on the Screen. The various
Types of Operations those are Performed by the Kernel are as followings:-

1) It Controls the State the Process Means it checks whether the Process is running or
Process is Waiting for the Request of the user.

2) Provides the Memory for the Processes those are Running on theSystem Means
Kernel Runs the Allocation and De-allocation Process , First When we Request for the
service then the Kernel will Provides the Memory to the Process and after that he also
Release the Memory which is Given to a Process.

3) The Kernel also Maintains a Time table for all the Processes those are Running
Means the Kernel also Prepare the Schedule Time means this will Provide the Time to
various Process of the CPU and the Kernel also Puts the Waiting and Suspended Jobs
into the different Memory Area.

4) When a Kernel determines that the Logical Memory doesn't fit to Store the
Programs. Then he uses the Concept of the Physical Memory which Will Stores the
Programs into Temporary Manner. Means the Physical Memory of the System can be
used as Temporary Memory.

5) Kernel also maintains all the files those are Stored into the Computer System and
the Kernel Also Stores all the Files into the System as no one can read or Write the
Files without any Permissions. So that the Kernel System also Provides us the Facility
to use the Passwords and also all the Files are Stored into the Particular Manner.

As we have learned there are Many Programs or Functions those are Performed by the
Kernel But the Functions those are Performed by the Kernel will never be Shown to the
user. And the Functions of the Kernel are Transparent to the user.

https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

Files and directories

At this point in the course, you have created lots of files, primarily Maple worksheets.
Some of them you have created yourself as homework assignments, and others you
have copied and used as parts of lab assignments. You may have created other kinds
of files as well, perhaps with the Emacs text editor.

In this tutorial we will study the Unix file system and discuss how to manipulate files and
navigate directories. This will come in handy as you begin writing, compiling, and
running C programs.

The Unix File System

We are now going to look at basic Unix commands for manipulating files and
directories. In Unix, a file can be one of three types: a text file (such as a letter or a C
program), an executable file (such as a compiled C program), or a directory (a file
““containing” other files).

When you consider that there are thousands of users of the local workstation network,
you will realize that the computers must keep track of tens or hundreds of thousands of
files. Unix uses directories to organize these files, much like a filing cabinet uses
drawers and folders to keep track of documents.

The Unix file system is organized around a single structure of directories, where each
directory can contain more directories (often called subdirectories) and/or files. The
entire file system, often spanning many machines and disks, can be visualized as a
tree. Picture this tree as growing upside down, with the root at the top and the leaves
toward the bottom. The leaves are all text and executable files, while the root, trunk,
limbs, branches, and twigs are all directories.

The file system is called the directory tree, and the directory at the base of the tree is
called the root directory. Every file and directory in the file system has a unique name,
called its pathname. The pathname of the root directory is /.

As a Unix user, you are given control over one directory. This directory is called your
home directory, and it was created when your account was established. This directory is
your personal domain, over which you have complete control. You are free to create
your own subtree of files and directories within your home directory. To determine the
pathname of your home directory, enter the following command into a Unix shell
window.

cd; pwd

Everyone has a different home directory, but two things are certain. The pathname of
your home directory will start with a slash (everything is rooted in the root directory) and
it will end with your user name. For example, suppose that a user jones has a home
directory /home/cs/class/jones. From this, we can tell that the root directory / contains a
subdirectory called home, which contains a subdirectory called cs, which contains a
subdirectory called class, which contains a subdirectory called jones. Every directory
has a pathname that shows the sequence of directories that lead from it back to the
root.

Working Directory

At any given time when interacting with Unix, you are ~“working in" or ““connected to"
some directory. This is called your working directory. When a Unix Shell window running
Unix is first created, you will be connected to your home directory. You will typically
change your working directory (with the cd command, as discussed later) several times
during a single session.

There is a command that prints the current working directory:
pwd

(You should try this out in a Unix Shell window, as you should all of the commands that
we introduce.) Notice that part of the name of the current directory (the part following
the last slash) appears as part of the command line prompt. For example, if your
working directory is /home/cs/class/jones, your prompt might look like

Examining Directories

What files and directories are contained in the working directory? You can find out with
the

Is

command, which lists the contents of the working directory. When you enter this
command, you will see a list of all of the Maple worksheets and other files that you have
copied or created in your home directory. Notice that only the names of the files are
displayed, not their full pathnames. But if you know the name of the working directory,
and you know the name of a file within it, you can easily figure out that file's full
pathname. What would be the full pathname of a file named "file" in your home
directory?

Click here for answer

10

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer17.html

Moving Around the Directory Tree

To this point we have never moved away from your home directory. Let's learn how to
navigate the directory tree. Before we do this, let's add to your home directory so that
we will have some files to experiment with. Type the following command into a Unix
Shell window.

mkdir testdir

(This command will create a directory called testdir in your home directory. Use
the Is command to verify that it really is there.)

The command cd takes a directory as an argument and makes that directory your
working directory. There are two ways to specify the name of a directory or file. One
way is to give the full pathname, and the other way is to give enough of the pathname to
let Unix know how to get to the desired directory from the working directory. We'll look at
these two methods in turn.

Absolute Pathnames

You can give the full pathname of the desired directory or file. For example, if jones
wanted to go to her home directory, she could use the command

cd /home/cs/class/jones

Or, if she wanted to connect to the testdir directory within her home directory, she could
issue the command

cd /home/cs/class/jones/testdir

Use cd now to connect to your testdir directory. Remember--if you've forgotten the
pathname of your home directory, you can find it out with the pwd command.

Look at the prompt to verify that you have succeeded in connecting to
the testdir directory. And use the Is command to see what is in the testdir directory.
What do you find?

Click here for the answer

As you experiment with moving around the directory tree, be sure and get used to
looking at the prompt to verify that things are working as you expect. If you get
completely confused, you can use pwd to find out exactly where you are.

Typing a full pathname can be a real pain, especially when it is a long one. Fortunately,

there are several convenient abbreviations. Unix will treat a tilde followed immediately
by a user name as an abbreviation for the full pathname of that user's home directory.

11

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer34.html

For example, if you wanted to connect to a user jones' home directory, you could do so
with

cd ~jones

Use this form of abbreviation (with your user name, of course) right now to reconnect to
your home directory.

This abbreviated form can be quite useful. Can you figure out how to use it to reconnect
to your testdir directory?

Click here for the answer

If it is your home directory in which you're interested, and not someone else's, there's a
second abbreviation. A tilde all by itself stands for your home directory. So, you can
connect back to your home directory with

cd ~

and to your testdir subdirectory with

cd ~/testdir

Finally, here's the ultimate shortcut. If issue the

cd

command with no argument, you will connect to your home directory.

Relative Pathnames

Be sure that you are connected to your home directory. You should know how to do that
without any help.

You can also specify a directory or file by describing to Unix how to get to the desired
directory or file from the working directory. For example, suppose that you want to
connect to your testdir directory from your home directory. You can do this by simply
issuing the command

cd testdir
Unix knows that the pathname argument to cd is a relative pathname because it does
not begin with a slash or a tilde, as all absolute pathnames do. When Unix encounters a

relative pathname, it glues the relative pathname onto the end of the full pathname of
the working directory to obtain an absolute pathname.

12

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer40.html

You should now be connected to your testdir subdirectory. You can connect back to
your home directory by issuing the command

cd ..

When ".." appears in a pathname, it refers to the parent of the current directory. So the
net result of issuing the cd command above is to move one step closer to the root of the
tree. You should now be connected to your home directory.

Using Absolute and Relative Pathnames

You might be wondering when you should use absolute pathnames and when you
should use relative pathnames. It is entirely a question of convenience. If you need to
name a directory that is “"close to" your working directory, then relative pathnames are
guite convenient. This will usually be the case, since you'll do most of your work in or
near your home directory.

On the other hand, if you need to name a directory that is ~“far away from" your working
directory, then you should use an absolute pathname.

Creating Files and Directories

Connect to your home directory.

You can create a hew (empty) directory using the mkdir command:
mkdir newdir

You can verify that the directory has actually been created by listing the contents of your
home directory.

When you need to create a file, you will generally do it by using Emacs. Suppose that
you'd like to create a file called newfile.txt in your newdir directory. You should select
the “"Open File..." option from the ~"File" menu.

Emacs will then prompt you for the name of a file to read. What do you make of the
prompt that Emacs gives you?

Click here for the answer
You need to supply the rest of the pathname, in this case newdir/newfile.txt, and then
type the Enter key. You can then use Emacs to create the text and, finally, save your

edits with the ~"Save Buffer" option from the “File" menu.

Deleting Files and Directories

13

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer55.html

By now you know how to create and examine files and directories. It is almost as
important to know how to get rid of unwanted files and directories.

To delete a file we use the rm command. (It helps to know that “'rm" stands for
““remove".) Connect to your newdir directory, which should contain a file newfile.txt.
Verify this by listing the directory.

To delete newfile.txt, issue the command

rm newfile.txt

Depending upon how your defaults are set up, Unix may ask you to confirm that you
really mean to delete the file. Just enter a "'y" or a ""yes" to confirm.

Now connect back to your home directory.

The command for deleting an empty directory is rmdir. For example,
your testdir directory should be empty. You can delete it with

rmdir testdir

Copying Files

Often you will want to copy a file from one place to another. For example, an instructor
in a class might place a file into a central location and ask everyone in the class to make
a private copy. Or you might decide to make a backup copy of some file before
modifying it.

To copy a file we use the cp command. For example, perhaps you have a file

called solutionl.mws or something similar in your home directory. You can copy it into a
file called soll-backup.mws by issuing the command

cp solutionl.mws soll-backup.mws

Either argument to cp can be an absolute or relative pathname. For example, to

copy solutionl.mws to a file called soll-backup.mws in the newdir directory, issue the
command

cp solutionl.mws newdir/soll-backup.mws

You should now use Is to verify that both copies were made.

File and Directory Summary

Here is a summary of the commands that we covered in this section.

14

SUMMARY OF UNIX FILE SYSTEM

Directory abbreviations
Current directory
Parent of current directory
~<user> Home directory of user <user>

~ Your home directory

Exploring the file system
pwd Print name of working directory
cd <pathname> Connect to directory <pathname> (. by default)

Is <pathname> List contents of directory <pathname> (. by default)

Manipulating directories and files
mkdir <pathname> Create a directory <pathname>
rm <pathname> Delete file <pathname>
cp <pathname><pathname> Copy one file into another

rmdir <pathname> Delete empty directory <pathname>

Library functions and system calls

Computer software are developed to either automate some tasks or solve some
problems. Either way, a software achieves the goal with the help of the logic that the
developer of that software writes. Every logic requires some services like computing the
length of a string, opening a file etc. Standard services are catered by some functions or
calls that are provided for this purpose only.

Like for calculating string length, there exists a standard function like strlen(), for

opening a file, there exists functions like open() and fopen(). We call these functions as
standard functions as any application can use them.

15

These standard functions can be classified into two major categories :

1. Library function calls.
2. System function calls.

In this article, we will try to discuss the concept behind the system and library calls in
form of various points and wherever required, | will provide the difference between the
two.

1. Library functions Vs System calls

The functions which are a part of standard C library are known as Library functions. For
example the standard string manipulation functions like strcmp(), strlen() etc are all
library functions.

The functions which change the execution mode of the program from user mode to
kernel mode are known as system calls. These calls are required in case some services
are required by the program from kernel. For example, if we want to change the date
and time of the system or if we want to create a network socket then these services can
only be provided by kernel and hence these cases require system calls. For example,
socket() is a system call.

2. Why do we need system calls?

System calls acts as entry point to OS kernel. There are certain tasks that can only be
done if a process is running in kernel mode. Examples of these tasks can be interacting
with hardware etc. So if a process wants to do such kind of task then it would require
itself to be running in kernel mode which is made possible by system calls.

3. Types of library functions

Library functions can be of two types :

= Functions which do not call any system call.
= Functions that make a system call.

There are library functions that do not make any system call. For example, the string
manipulation functions like strlen() etc fall under this category. Also, there are library
functions that further make system calls, for example the fopen() function which a
standard library function but internally uses the open() sytem call.

16

4. Interaction between components

The following diagram to depict how Library functions, system calls, application code
interact with each other.

17

The diagram above makes it clear that the application code can interact with Library
functions or system calls. Also, a library function can also call system function from
within. But only system calls have access to kernel which further can access computer
hardware.

5. fopen() vs open()

Some of us may argue that why do we have two functions for the same operation ie
opening a file?

Well, the answer to this is the fact that fopen() is a library function which provides
buffered 1/O services for opening a file while open() is a system call that provides non-
buffered 1/O services. Though open() function is also available for applications to use
but application should avoid using it directly.

In general, if a library function corresponding to a system call exists, then applications
should use the library function because :

= Library functions are portable which means an application using standard library
functions will run on all systems. While on the other hand an application relying on
the corresponding system call may not run on every system as system call interface
may vary from system to system.

= Sometimes the corresponding library function makes the load to system call lesser
resulting in non-frequent switches from user mode to kernel mode. For example if
there is an application that reads data from file very frequently, then using fread()
instead of read() would provide buffered 1/0 which means that not every call to
fread() would result in a call to system call read(). The fread() may read larger chunk
of data(than required by the user) in one go and hence subsequent fread() will not
require a call to system function read().

6. Is malloc() a system call?

This is one of the very popular misconception that people have. Lets make it clear that
malloc() is not a system call. The function call malloc() is a library function call that
further uses the brk() or sbrk() system call for memory allocation.

7. System calls : Switching execution modes

Traditionally, the mechanism of raising an interrupt of ‘int $0x80’ to kernel was used.
After trapping the interrupt, kernel processes it and changes the execution mode from
user to kernel mode. Today, the systenter/sysexit instructions are used for switching the
execution mode.

18

8. Some other differences

Besides all the above, here are a few more differences between a system and library
call :

= Alibrary function is linked to the user program and executes in user space while a
system call is not linked to a user program and executes in kernel space.

= Alibrary function execution time is counted in user level time while a system call
execution time is counted as a part of system time.

= Library functions can be debugged easily using a debugger while System calls
cannot be debugged as they are executed by the kernel.

Editors (vi and ed)

Text editing is an important part of all operating systems, including Linux. In Linux, you
need to create and edit a variety of text files, as the following list describes:

e System configuration files,
including /etc/fstab, /etc/hosts, /etc/inittab, /etc/X11/XF86Config, and many more

o User files, such as .newsrc and .bash_profile
o Mail messages and news articles
« Shell script files
e Perl, Python, and Tcl/Tk scripts
e C or C++ programs
All Unix systems, including Linux, come with the following two text editors:
e ed—A line-oriented text editor

o Vi—A full-screen text editor that supports the command set of an earlier editor by
the name of ex

In Red Hat Linux, another text editor, vim, emulates vi and ex, but you can invoke the
editor by using the vi command.

Insider Insight Although ed and vi may seem more cryptic than other, more graphical
text editors, you should learn the basic editing commands of these
two editors, because at times, these editors may be the only ones
available. If you run into a system problem and Linux refuses to boot
from the hard disk, for example, you may need to boot from a floppy.
In this case, you must edit system files by using the ed editor,

19

because that editor is small enough to fit on the floppy.
As | show in the following sections, learning the basic text-editing commands of ed and
vi Is easy.
Using ed

The ed text editor works by using a buffer—an in-memory storage area where the actual
text resides until you explicitly store the text in a file. You must use ed only if you boot a
minimal version of Linux (for example, from a boot floppy), and the system doesn't
support full-screen mode.

Starting ed

To start ed, use the following command syntax:
ed [-] [-G] [-s] [-pprompt-string] [filename]

The arguments in brackets are optional. The following list explains these arguments:
e - suppresses the printing of character counts and diagnostic messages.
e -G forces backward compatibility with older versions of ed.
e -sisthe same as the single hyphen.

e -p prompt-string sets the text that the editor displays when waiting for a
command. (The default is a null prompt string.)

« filename is the name of the file to be edited.

Learning ed

If you use the ed editor, you work in either command mode or text-input mode, as the
following list explains:

« Command mode is what you get by default. In this mode, ed interprets anything
that you type as a command. As you see in the section “Summarizing ed
Commands,” later in this chapter, ed uses a simple command set, wherein each
command consists of a single character.

o Text-input mode enables you to enter text into the buffer. You can enter input
mode by using the commands a (append), ¢ (change), or i (insert). After entering
lines of text, you can leave text-input mode by entering a period (.) on a line by
itself.

Secret
The ed editor embodies the concept of the current line—the line to which ed applies the

commands that you type. Each line has an address: the line number. You can apply a
command to a range of lines by prefixing the command with an address range.

20

The p command, for example, prints (displays) the current line. To see the first 10 lines,
use the following command:

1,10p

In a command, the period (.) refers to the current line, and the dollar sign ($) refers to
the last line in the file. Thus, the following command deletes all the lines from the
current line to the last one:

., $d

Examining a Sample Session with ed

The following example shows how to begin editing a file in ed:

ed -p: /etc/fstab
621

This example uses the -p option to set the prompt to the colon character (:) and opens
the file /etc/fstab for editing. Turning on a prompt character is helpful, because without
the prompt, determining whether ed is in input mode or command mode is difficult.

The ed editor opens the file, reports the number of characters in the file (621), displays
the prompt (), and waits for a command.

After ed opens a file for editing, the current line is the last line of the file. To see the
current line number, use the .= command, as follows:

8

The output tells you that the /etc/fstab file contains eight lines. (Your
system’s /etc/fstab file, of course, may contain a different number of lines.) The
following example shows how you can see all these lines:

:1,%p

LABEL=/ / ext3 defaults 11
LABEL=/boot /boot ext3 defaults 12
none /dev/pts devpts gid=5,mode=620 00
none /proc proc defaults 00

none /dev/ishm tmpfs defaults 00

21

/dev/hda6 swap swap defaults 00
/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro O O

/dev/fdO /mnt/floppy auto noauto,owner,kudzu 0 0

To go to a specific line, type the line number and the editor then displays that line. Here
is an example that takes you to the first line in the file:

1
LABEL=/ / ext3 defaults 11

Suppose that you want to delete the line that contains cdrom. To search for a string,
type a slash (/) and follow it with the string that you want to locate, as follows:

:/lcdrom

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0
That line becomes the current line. To delete the line, use the d command, as follows:

:d

To replace a string with another, use the s command. To replace cdrom with the
string cd, for example, use the following command:

:s/cdrom/cd/

To insert a line in front of the current line, use the i command, as follows:

o
(type the line you want to insert)

(type a single period)

You can enter as many lines as you want. After the last line, enter a period (.) on a line
by itself. That period marks the end of text-input mode, and the editor switches to
command mode. In this case, you can tell that ed has switched to command mode,
because you see the prompt (©).

22

If you're happy with the changes, you can write them to the file by using

the w command. If you want to save the changes and exit, type wq to perform both
steps at the same time, as follows:

‘W(Q

645

The ed editor saves the changes in the file, displays the number of characters that it
saved, and exits.

If you want to quit the editor without saving any changes, use the Q command.

Summarizing ed Commands

The preceding sample session should give you an idea of how to use ed commands to
perform the basic tasks of editing a text file. Table 11-1 lists all commonly used ed
commands.

Table 11-1: Commonly Used ed Commands

Command Meaning

Ilcommand Execute a shell command
$ Go to the last line in the buffer
% Apply the command that follows to all lines in the buffer (for example,

%p prints all lines)

+ Go to the next line

+n Go to nth next line (n is a number)

: Apply the command that follows to all lines in the buffer (for example, ,p
prints all lines); similar to %

- Go to the preceding line

-n Go to nth previous line (n is a number)

Refer to the current line in the buffer

23

Table 11-1: Commonly Used ed Commands

Command Meaning

Iregex/ Search forward for the specified regular expression (see Chapter 24 for
an introduction to regular expressions)

; Refer to a range of line (if you specify no line numbers, the editor
assumes current through last line in the buffer)

= Print the line number

?regex? Search backward for the specified regular expression (see Chapter 24
for an introduction to regular expressions)

A Go to the preceding line; also see the - command

n Go to the nth previous line (where n is a number); see also the -
n command

a Append after the current line

c Change the specified lines

d Delete the specified lines

e file Edit the file

f file Change the default filename

h Display an explanation of the last error

H Turn on verbose-mode error reporting

Insert text before the current line

Join contiguous lines

24

Table 11-1: Commonly Used ed Commands

Command Meaning

kx Mark the line with letter x (later, you can refer to the line as ‘x)

I Print (display) lines

m Move lines

n Go to line number n

newline Display the next line and make that line current

P Toggle prompt mode on or off

q Quit the editor

Q Quit the editor without saving changes

r file Read and insert the contents of the file after the current line
s/old/new/ Replace old string with new

Spacen A space, followed by n; nth next line (n is a number)

u Undo the last command

W file Append the contents of the buffer to the end of the specified file
w file Save the buffer in the specified file (if you name no file, ed saves it in the

default file—the file whose contents ed is currently editing)

You can prefix most editing commands with a line number or an address range, which
you express in terms of two line numbers that you separate with a comma; the
command then applies to the specified lines. To append text after the second line in the
buffer, for example, use the following command:

25

2a

(Type lines of text. End with single period on a line.)
To print lines 3 through 15, use the following command:
3,15p

Although you may not use ed often, much of the command syntax carries over to the vi
editor. As the following section on vi shows, vi accepts ed commands if it's in its
command mode.

Using vi

The vi editor is a full-screen text editor that enables you to view a file several lines at a
time. Most UNIX systems, including Linux, come with vi. If you learn the basic features
of vi, therefore, you can edit text files on almost any UNIX system.

As does the ed editor, vi works with a buffer. As vi edits a file, it reads the file into a
buffer—a block of memory—and enables you to change the text in the buffer. The vi
editor also uses temporary files during editing, but it doesn’t alter the original file until
you save the changes by using the :w command.

Setting the Terminal Type

Before you start a full-screen text editor such as vi, you must set the TERM environment
variable to the terminal type (such as vt100 or xterm). The vi editor uses the terminal
type to look up the terminal’s characteristics in the /etc/termcap file and then control the
terminal in full-screen mode.

If you run the X Window System and a GUI, such as GNOME or KDE, you can use Vi in
a terminal window. The terminal window’s terminal type is xterm. (To verify, type echo
$TERM at the command prompt.) After you start the terminal window, it automatically
sets the TERM environment variable to xterm. You can normally, therefore, use vi in a
terminal window without explicitly setting the TERM variable.

Starting vi

If you want to consult the online manual pages for vi, type the following command:
man vi
To start the editor, use the vi name and run it with the following command syntax:

vi [flags] [+cmd] [filename]

26

The arguments shown in brackets are optional. The following list explains these
arguments:

flags are single-character flags that control the way that vi runs.

+cmd causes vi to run the specified command after it starts. (You learn more
about these commands in the section “Summarizing the vi Commands,” later in
this chapter.)

filename is the name of the file to be edited.

The flags arguments can include one or more of the following:

-c cmd executes the specified command before editing begins.
-e starts in colon command mode (which | describe in the following section).
-i starts in input mode (which | also describe in the following section).

-m causes the editor to search through the file for something that looks like an
error message from a compiler.

-R makes the file read-only so that you can’t accidentally overwrite the file. (You
can also type view filename to start the editor in this mode to simply view a file.)

-s runs in safe mode, which turns off many potentially harmful commands.

-v starts in visual command mode (which | describe in the following section).

Most of the time, however, vi starts with a filename as the only argument, as follows:

vi /etc/hosts

Another common way to start vi is to jump to a specific line number right at startup. To
begin editing at line 107 of the file /etc/X11/XF86Config, for example, use the following
command:

vi +107 /etc/X11/XF86Config

This way of starting vi is useful if you edit a source file after the compiler reports an error
at a specific line number.

Learning vi Concepts

If you edit a file by using vi, the editor loads the file into a buffer, displays the first few
lines of the file in a full-screen window, and positions the cursor on the first line. If you
type the command vi /etc/fstab in a terminal window, for example, you get a full-screen
text window, as shown in Figure 11-1.

27

ABEL=/ / extd defaults 11 [

LABLL=/Boot /boot exty defaultn 12

nose /dav/pts devpis gid=5.00de=620 0 O

nose fpro¢ proe defaults 00

nose fdev/shn tepfs defaults 00
/dev/hdab swap swap defaults 00
/dev/cdroe fent/cdrom udf, 1509660 noauto,owner kudzu,r
o000

/dev/Id0 fent/f loppy auto soauto,owner kudzu 0 0
L.-u /fstab” 8L, 621(1,1 All -.l

Figure 11-1: A File Displayed in a Full-Screen Text Window by the vi Editor.

The last line shows information about the file, including the number of lines and the
number of characters in the file. Later, vi uses this area as a command-entry area. It
uses the rest of the lines to display the file. If the file contains fewer lines than the
window, vi displays the empty lines with a tilde (~) in the first column.

The cursor marks the current line, appearing there as a small black rectangle. The
cursor appears on top of a character. In Figure 11-1, the cursor is on the first character
of the first line.

In vi, you work in one of the following three modes:

e Visual-command mode is what you get by default. In this mode, vi interprets
anything that you type as a command that applies to the line containing the
cursor. The vi commands are similar to those of ed, and 1 list the in the section
“Summarizing the vi Commands,” later in this chapter.

e Colon-command mode enables you to read or write files, set vi options, and quit.
All colon commands start with a colon (:). After you enter the colon, vi positions
the cursor at the last line and enables you to type a command. The command
takes effect after you press Enter. Notice that vi’'s colon-command mode relies on
the ed editor. When editing a file using vi, you can press Escape at any time to
enter the command mode. In fact, if you are not sure what mode vi is in, press
Escape a few times to get vi into command mode.

o Text-input mode enables you to enter text into the buffer. You can enter text-
input mode by using the command a (insert after cursor), A (append at end of
line), or i (insert after cursor). After entering lines of text, you must press Esc to
leave text-input mode and reenter visual-command mode.

28

One problem with all these modes is that you can’t easily determine vi’'s current mode.
Typing text, only to realize that vi isn’t in text-input mode, can be frustrating. The
converse situation also is common—you may end up typing text when you want to enter
a command. To ensure that vi is in command mode, just press Esc a few times.
(Pressing Esc more than once doesn’t hurt.)

Tip To view online Help in vi, type :help while in command mode.

Examining a Sample Session with vi

To begin editing the file /etc/fstab, enter the following command (before you edit the file,
please make a backup copy by typing the command cp /etc/fstab /etc/fstab-saved):

vi /etc/fstab

Figure 11-1, earlier in this chapter, shows you the resulting display, with the first few
lines of the file appearing in a full-screen text window. The last line shows the file’s
name and statistics: the number of lines and characters.

The vi editor initially positions the cursor on the first character. One of the first things
that you need to learn is how to move the cursor around. Try the following commands
(each command being a single letter; just type the letter, and vi responds):

e jmoves the cursor one line down.

e Kk moves the cursor one line up.

« h moves the cursor one character to the left.

e | moves the cursor one character to the right.
You can also move the cursor by using the arrow keys.

Instead of moving one line or one character at a time, you can move one word at a time.
Try the following single-character commands for word-size cursor movement:

¢ W moves the cursor one word forward.
e b moves the cursor one word backward.

The last type of cursor movement affects several lines at a time. Try the following
commands and see what happens:

e Citrl-D scrolls down half a screen.
e Ctrl-U scrolls up half a screen.

The last two commands, of course, aren’t necessary if the file contains only a few lines.
If you’re editing large files, however, the capability to move several lines at a time is
handy.

You can move to a specific line number at any time by using a colon command. To go
to line 1, for example, type the following and then press Enter:

29

1

After you type the colon, vi displays the colon on the last line of the screen. From then
on, vi uses the text that you type as a command. You must press Enter to submit the
command to vi. In colon-command mode, vi accepts all the commands that the ed editor
accepts—and then some.

To search for a string, first type a slash (/). The vi editor displays the slash on the last
line of the screen. Type the search string, and then press Enter. The vi editor locates
the string and positions the cursor at the beginning of that string. Thus, to locate the
string cdrom in the file /etc/fstab, type the following:

/cdrom
To delete the line that contains the cursor, type dd. The vi editor deletes that line of text

and makes the next line the current one.

Tip To begin entering text in front of the cursor, type i. The vi editor switches to text-
input mode. Now you can enter text. After you finish entering text, press Esc to
return to visual-command mode.

After you finish editing the file, you can save the changes in the file by using

the :w command. If you want to save the changes and exit, you can type :wq to perform
both steps at the same time. The vi editor saves the changes in the file and exits. You
can also save the changes and exit the editor by pressing Shift-zz (press and hold the
Shift key and press z twice).

To quit the editor without saving any changes, type the :q! command.

Summarizing the vi Commands

The sample editing session should give you a feel for the vi commands, especially its
three modes:

e Visual-command mode (the default)

e Colon-command mode, in which you enter commands, following them with a
colon (3)

« Text-input mode, which you enter by typing a, A, or i

In addition to the few commands that the sample session illustrates, vi accepts many
other commands. Table 11-2 lists the basic vi commands, organized by task.

30

Table 11-2: Basic vi Commands

Command Meaning
Insert Text
a Insert text after the cursor
A Insert text at the end of the current line
Insert text at the beginning of the current line
i Insert text before the cursor
o] Open a line below the current line
@) Open a line above the current line
Ctrl-v Insert any special character in input mode
Delete Text
D Delete up to the end of the current line
dd Delete the current line
dw Delete from the cursor to the end of the following word
X Delete the character on which the cursor rests

Change Text

C

Change up to the end of the current line

cC

Change the current line

31

Table 11-2: Basic vi Commands

Command Meaning

cw Change the word

J Join the current line with the next one

rx Replace the character under the cursor with x (x is any

character)

Change the character under the cursor to the opposite case

Move Cursor

$ Move to the end of the current line

; Repeat the last f or F command

N Move to the beginning of the current line

e Move to the end of the current word

fx Move the cursor to the first occurrence of character x on the
current line

Fx Move the cursor to the last occurrence of character x on the
current line

H Move the cursor to the top of the screen

h Move one character to the left

] Move one line down

k Move one line up

32

Table 11-2: Basic vi Commands

Command Meaning

L Move the cursor to the end of the screen

I Move one character to the right

M Move the cursor to the middle of the screen
n| Move the cursor to column n on current line
nG Place cursor on line n

w Move to the beginning of the following word

Mark a Location

X Move the cursor to the beginning of the line that contains
mark x

X Move the cursor to mark x

mx Mark the current location with the letter x

Scroll Text

Ctrl-b Scroll backward by a full screen

Ctrl-d Scroll forward by half a screen

Ctrl-f Scroll forward by a full screen

Ctrl-u Scroll backward by half a screen

33

Table 11-2: Basic vi Commands

Command

Refresh Screen

Meaning

Ctrl-L

Redraw the screen

Cut and Paste Text

"xndd Delete n lines and move them to buffer x (x is any single
lowercase character)

"Xnyy Yank n (a number) lines and append them to buffer x

"xnyy Yank n (a number) lines into buffer x (x is any single
uppercase character)

"Xp Put the yanked lines from buffer x after the current line

P Put the yanked line above the current line

p Put the yanked line below the current line

yy Yank (copy) the current line into an unnamed buffer

Colon Commands

:lcommand Execute the shell command

-e filename Edit the file

:f Display the filename and current line number
‘N Move to line n (n is a number)

34

Table 11-2: Basic vi Commands

Command Meaning

:q Quit the editor

:q! Quit without saving changes

r filename Read the file and insert after the current line
‘w filename Write the buffer to the file

‘w(q Save the changes and exit

Search Text

/string Search forward for string
?string Search backward for string
n Find the next string

View File Information

Ctrl-g

Show the filename, size, and current line number

Miscellaneous

u Undo the last command
Esc End text-input mode and enter visual-command mode
U Undo recent changes to the current line

35

Unit-2

Unix Shell programming
Types of Shells

The shell provides you with an interface to the UNIX system. It gathers input from you
and executes programs based on that input. When a program finishes executing, it
displays that program'’s output.

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions.

Shell Prompt:
The prompt, $, which is called command prompt, is issued by the shell. While the

prompt is displayed, you can type a command.

The shell reads your input after you press Enter. It determines the command you want
executed by looking at the first word of your input. A word is an unbroken set of
characters. Spaces and tabs separate words.

Following is a simple example of date command which displays current date and time:

$date
ThuJun2508:30:19 MST 2009

You can customize your command prompt using environment variable PS1 explained
in Environment tutorial.

Shell Types:

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is the
$ character.

2. The C shell. If you are using a C-type shell, the default prompt is the %
character.

There are again various subcategories for Bourne Shell which are listed as follows:
« Bourne shell (sh)
e Korn shell (ksh)

« Bourne Again shell (bash)

36

o POSIX shell (sh)
The different C-type shells follow:
e Cshell (csh)
e TENEX/TOPS C shell (tcsh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while he
was at AT&T Bell Labs in New Jersey.

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred to as
"the shell".

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this
reason, it is the shell of choice for writing scripts to use on several different versions of
UNIX.

In this tutorial, we are going to cover most of the Shell concepts based on Borne Shell.
Shell Scripts:

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign, #,
describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing us
to go through massive amounts of data, files to read and store data, and variables to
read and store data, and the script may include functions.

Shell scripts and functions are both interpreted. This means they are not compiled.

We are going to write a many scripts in the next several tutorials. This would be a
simple text file in which we would put our all the commands and several other required
constructs that tell the shell environment what to do and when to do it.

Example Script:
Assume we create a test.sh script. Note all the scripts would have .sh extension.

Before you add anything else to your script, you need to alert the system that a shell
script is being started. This is done using the shebang construct. For example:

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne
shell. It's called a shebang because the # symbol is called a hash, and the ! symbol is
called a bang.

To create a script containing these commands, you put the shebang line first and then
add the commands:

#!/bin/bash
pwd

37

Is

Shell Comments:

You can put your comments in your script as follows:

#!/bin/bash

Author : Zara Ali

Copyright (c) Tutorialspoint.com
Script follows here:

pwd

Is

Now you save the above content and make this script executable as follows:

$chmod +x test.sh

Now you have your shell script ready to be executed as follows:

$./test.sh

This would produce following result:

/home/amrood
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note: To execute your any program available in current directory you would execute
using ./program_name

Extended Shell Scripts:
Shell scripts have several required constructs that tell the shell environment what to do

and when to do it. Of course, most scripts are more complex than above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, however, it is still just
a list of commands executed sequentially.

Following script use the read command which takes the input from the keyboard and
assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#1/bin/sh

Author : Zara Ali

Copyright (c) Tutorialspoint.com
Script follows here:

echo "What is your name?"

38

read PERSON
echo "Hello, SPERSON"

Here is sample run of the script:

$./test.sh

Whatis your name?
ZaraAli
Hello,ZaraAli

$

Shell Metacharacters

Linux for Programmers and Users, Section 5.5.

As was discussed in Structure of a Command, the command options, option arguments
and command arguments are separated by the space character. However, we can also
use special characters called metacharacters in a Unix command that the shell
interprets rather than passing to the command.

The Shell Metacharacters are listed here for reference. Many of the metacharacters are

described elsewhere in the study guide.

Symbol | Meaning

> Output redirection, (see File Redirection)

>> Output redirection (append)

< Input redirection

* File substitution wildcard; zero or more characters

? File substitution wildcard; one character

[] File substitution wildcard; any character between brackets
‘cmd’ Command Substitution

$(cmd) | Command Substitution

| The Pipe (|)

; Command sequence, Sequences of Commands

| OR conditional execution

&& AND conditional execution

() Group commands, Sequences of Commands

& Run command in the background, Background Processes
Comment

$ Expand the value of a variable

\ Prevent or escape interpretation of the next character

<< Input redirection (see Here Documents)

39

http://faculty.salina.k-state.edu/tim/unix_sg/nonprogrammers/commands.html#cmd-struct
http://faculty.salina.k-state.edu/tim/unix_sg/shell/metachar.html#metachar
http://faculty.salina.k-state.edu/tim/unix_sg/shell/redirect.html#redirect
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/pipe_shell.html#pipe
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/jobs.html#background
http://faculty.salina.k-state.edu/tim/unix_sg/shell/here.html#here

4.3.1. How to Avoid Shell Interpretation

Linux for Programmers and Users, Section 5.16.

Sometimes we need to pass metacharacters to the command being run and do not
want the shell to interpret them. There are three options to avoid shell interpretation of
metacharacters.

1. Escape the metacharacter with a backslash (\). (See also Escaped Characters)
Escaping characters can be inconvenient to use when the command line
contains several metacharacters that need to be escaped.

2. Use single quotes (' ') around a string. Single quotes protect all characters except
the backslash (\).

3. Use double quotes (" "). Double quotes protect all characters except the
backslash (\), dollar sign ($) and grave accent ().

Double quotes is often the easiest to use because we often want environment
variables to be expanded.

Note

Single and double quotes protect each other. For example:

$ echo 'Hi "Intro to Unix" Class'
Hi "Intro to Unix" Class

$ echo "Hi 'Intro to Unix' Class"
Hi 'Intro to Unix' Class

Shell variables

In this chapter, we will learn how to use Shell variables in Unix. A variable is a
character string to which we assign a value. The value assigned could be a number,
text, filename, device, or any other type of data.

A variable is nothing more than a pointer to the actual data. The shell enables you to
create, assign, and delete variables.

Variable Names

40

http://faculty.salina.k-state.edu/tim/unix_sg/shell/echo.html#escaped

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or
the underscore character ().

By convention, Unix shell variables will have their names in UPPERCASE.
The following examples are valid variable names -

_ALI
TOKEN_A
VAR 1
VAR 2

Following are the examples of invalid variable names -

2 VAR
-VARIABLE
VAR1-VAR2
VAR_A!

The reason you cannot use other characters such as !, *, or - is that these characters
have a special meaning for the shell.

Defining Variables

Variables are defined as follows -
variable_name=variable_value
For example -

NAME="Zara Ali"

The above example defines the variable NAME and assigns the value "Zara Ali" to it.
Variables of this type are called scalar variables. A scalar variable can hold only one
value at a time.

Shell enables you to store any value you want in a variable. For example -

VAR1="Zara Ali"
VAR2=100

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) -

For example, the following script will access the value of defined variable NAME and
print it on STDOUT -

Live Demo

#!/bin/sh

NAME="Zara Ali"

41

http://tpcg.io/AP7zgT

echo SNAME

The above script will produce the following value -
Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command.
After a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of
NAME -

Live Demo

#!/bin/sh

NAME="Zara Ali"
readonly NAME
NAME="Qadiri"

The above script will generate the following result -
/bin/sh: NAME: This variable is read only.

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of
variables that it tracks. Once you unset a variable, you cannot access the stored value
in the variable.

Following is the syntax to unset a defined variable using the unset command -
unset variable_name

The above command unsets the value of a defined variable. Here is a simple example
that demonstrates how the command works -

#!/bin/sh

NAME="Zara Ali"
unset NAME
echo SNAME

The above example does not print anything. You cannot use the unset command
to unset variables that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present -

42

http://tpcg.io/tawT1C

Local Variables - A local variable is a variable that is present within the current
instance of the shell. It is not available to programs that are started by the shell.
They are set at the command prompt.

Environment Variables — An environment variable is available to any child
process of the shell. Some programs need environment variables in order to
function correctly. Usually, a shell script defines only those environment
variables that are needed by the programs that it runs.

Shell Variables — A shell variable is a special variable that is set by the shell
and is required by the shell in order to function correctly. Some of these
variables are environment variables whereas others are local variables.

Shell scripts

A shell script is a computer program designed to be run by the Unix/Linux shell which
could be one of the following:

The Bourne Shell
The C Shell
The Korn Shell

The GNU Bourne-Again Shell

A shell is a command-line interpreter and typical operations performed by shell scripts
include file manipulation, program execution, and printing text.

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell environment what to do
and when to do it. Of course, most scripts are more complex than the above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, it is still just a list of
commands executed sequentially.

The following script uses the read command which takes the input from the keyboard
and assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

43

echo "What is your name?"
read PERSON
echo "Hello, $SPERSON"

Here is a sample run of the script -

$./test.sh

What is your name?
Zara Ali

Hello, Zara Ali

$

Subsequent part of this tutorial will cover Unix/Linux Shell Scripting in detail.

Shell commands

This quick guide lists commands, including a syntax and a brief description. For more
detail, use -

$man command
Files and Directories
These commands allow you to create directories and handle files.

Given below is the list of commands in Files and Directories.

Sr.No. Command & Description

cat

Displays File Contents

2 cd

Changes Directory to dirname
3 chgrp

Changes file group
4

chmod

Changes permissions

44

10

11

12

13

14

15

cp
Copies source file into destination

file

Determines file type

find

Finds files

grep
Searches files for regular expressions

head

Displays first few lines of a file

In

Creates softlink on oldname

Is

Displays information about file type

mkdir

Creates a new directory dirname

more

Displays data in paginated form

mv

Moves (Renames) an oldname to newname

pwd

45

Prints current working directory

16 rm
Removes (Deletes) filename
17 rmdir
Deletes an existing directory provided it is empty
18 tail
Prints last few lines in a file
19

touch

Updates access and modification time of a file

Manipulating data

The contents of files can be compared and altered with the following commands.
Given below is the list of commands in Manipulating data.

Sr.No. Command & Description

awk

Pattern scanning and processing language

2 cmp

Compares the contents of two files
3 comm

Compares sorted data
4

cut

Cuts out selected fields of each line of a file

46

10

11

12

13

14

15

diff

Differential file comparator

expand

Expands tabs to spaces

join

Joins files on some common field

perl

Data manipulation language

sed

Stream text editor

sort

Sorts file data

split

Splits file into smaller files

tr

Translates characters

uniq

Reports repeated lines in a file

wcC

Counts words, lines, and characters

Vi

47

Opens vi text editor

16 vim
Opens vim text editor
17 fmt
Simple text formatter
18 spell
Checks text for spelling error
19 ispell
Checks text for spelling error
20 emacs
GNU project Emacs
21 ex, edit
Line editor
22 emacs

GNU project Emacs

Compressed Files

Files may be compressed to save space. Compressed files can be created and
examined.

Sr.No. Command & Description

compress

48

Compresses files

2 gunzip
Helps uncompress gzipped files
3 gzip
GNU alternative compression method
4 uncompress
Helps uncompress files
S unzip
List, test and extract compressed files in a ZIP archive
6 zcat
Cat a compressed file
! zcmp
Compares compressed files
8 2diff
Compares compressed files
9

zmore

File perusal filter for crt viewing of compressed text

Getting Information

Various Unix manuals and documentation are available on-line. The following Shell
commands give information -

49

Sr.No. Command & Description

apropos
Locates commands by keyword lookup
2 info
Displays command information pages online
2 man
Displays manual pages online
3 whatis
Searches the whatis database for complete words
4

yelp
GNOME help viewer

Network Communication

These following commands are used to send and receive files from a local Unix hosts
to the remote host around the world.

Sr.No. Command & Description

ftp

File transfer program

rcp

Remote file copy

rlogin

50

Remote login to a Unix host

rsh

Remote shell
S tftp

Trivial file transfer program
6 telnet

Makes terminal connection to another host
/ ssh

Secures shell terminal or command connection
8 scp

Secures shell remote file copy
9

sftp

Secures shell file transfer program

Some of these commands may be restricted at your computer for security reasons.
Messages between Users

The Unix systems support on-screen messages to other users and world-wide
electronic mail —

Sr.No. Command & Description

evolution

GUI mail handling tool on Linux

51

mail

Simple send or read mail program

mesg
Permits or denies messages
4 parcel
Sends files to another user
o pine
Vdu-based mail utility
6 talk
Talks to another user
7

write
Writes message to another user

Programming Utilities

The following programming tools and languages are available based on what you have
installed on your Unix.

Given below is the list of tools and languages in Programming Utilities.

Sr.No. Command & Description

dbx
Sun debugger

gdb
GNU debugger

52

10

11

12

13

make

Maintains program groups and compile programs

nm

Prints program'’s name list

size

Prints program's sizes

strip

Removes symbol table and relocation bits

cb

C program beautifier

cc
ANSI C compiler for Suns SPARC systems

ctrace

C program debugger

gcc
GNU ANSI C Compiler

indent

Indent and format C program source

bc

Interactive arithmetic language processor

gcl

53

14

15

16

17

18

19

20

21

22

23

GNU Common Lisp

perl

General purpose language

php
Web page embedded language

Py
Python language interpreter

asp

Web page embedded language

CC

C++ compiler for Suns SPARC systems

g++

GNU C++ Compiler

javac
JAVA compiler

appletvieweir

JAVA applet viewer

netbeans

Java integrated development environment on Linux

sqlplus
Runs the Oracle SQL interpreter

54

24 sqlldr

Runs the Oracle SQL data loader

25 mysql

Runs the mysql SQL interpreter

Misc Commands

These commands list or alter information about the system -

Given below is the list of Misc Commands in Unix.

Sr.No. Command & Description

chfn

Changes your finger information

2 chgrp
Changes the group ownership of a file
3 chown
Changes owner
4 date
Prints the date
5 determin
Automatically finds terminal type
6

du

Prints amount of disk usage

55

10

11

12

13

14

15

16

17

echo

Echo arguments to the standard options

exit

Quits the system

finger

Prints information about logged-in users

groupadd

Creates a user group

groups

Show group memberships

homequota

Shows quota and file usage

iostat

Reports 1/O statistics

kill

Sends a signal to a process

last

Shows last logins of users

logout

Logs off Unix

lun

56

18

19

20

21

22

23

24

25

26

27

Lists user names or login ID

netstat

Shows network status

passwd

Changes user password

passwd

Changes your login password

printenv

Displays value of a shell variable

ps
Displays the status of current processes

ps
Prints process status statistics

quota -v

Displays disk usage and limits

reset

Resets terminal mode

script

Keeps script of terminal session

script

Saves the output of a command or process

57

28

30

31

32

33

34

35

36

37

38

39

setenv

Sets environment variables

stty

Sets terminal options

time

Helps time a command

top

Displays all system processes

tset

Sets terminal mode

tty
Prints current terminal name

umask

Show the permissions that are given to view files by default

uname

Displays name of the current system

uptime

Gets the system up time

useradd

Creates a user account

users

58

Prints names of logged in users

40 vmstat

Reports virtual memory statistics
41 W

Shows what logged in users are doing
42

who

Lists logged in users

The environment

In this chapter, we will discuss in detail about the Unix environment. An important Unix
concept is the environment, which is defined by environment variables. Some are set
by the system, others by you, yet others by the shell, or any program that loads
another program.

A variable is a character string to which we assign a value. The value assigned could
be a number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using
the echo command -

$TEST="Unix Programming"
$echo $TEST

It produces the following result.
Unix Programming

Note that the environment variables are set without using the $sign but while
accessing them we use the $ sign as prefix. These variables retain their values until we
come out of the shell.

When you log in to the system, the shell undergoes a phase called initialization to set
up the environment. This is usually a two-step process that involves the shell reading
the following files -

o /etc/profile
e profile

59

The process is as follows -
o The shell checks to see whether the file /etc/profile exists.

« If it exists, the shell reads it. Otherwise, this file is skipped. No error message is
displayed.

e The shell checks to see whether the file .profile exists in your home directory.
Your home directory is the directory that you start out in after you log in.

o If it exists, the shell reads it; otherwise, the shell skips it. No error message is
displayed.

As soon as both of these files have been read, the shell displays a prompt -
$
This is the prompt where you can enter commands in order to have them executed.

Note — The shell initialization process detailed here applies to all Bourne type shells,
but some additional files are used by bash and ksh.

The .profile File

The file /etc/profile is maintained by the system administrator of your Unix machine
and contains shell initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization
information as you want to this file. The minimum set of information that you need to
configure includes -

e The type of terminal you are using.
o Alist of directories in which to locate the commands.
« Alist of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it using the vi
editor and check all the variables set for your environment.

Setting the Terminal Type

Usually, the type of terminal you are using is automatically configured by either
the login or getty programs. Sometimes, the auto configuration process guesses your
terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might look strange, or
you might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest
common denominator in the following way -

$TERM=vt100
$

60

Setting the PATH

When you type any command on the command prompt, the shell has to locate the
command before it can be executed.

The PATH variable specifies the locations in which the shell should look for
commands. Usually the Path variable is set as follows -

$PATH=/bin:/usr/bin
$

Here, each of the individual entries separated by the colon character (:) are directories.
If you request the shell to execute a command and it cannot find it in any of the
directories given in the PATH variable, a message similar to the following appears -

$hello
hello: not found
$

There are variables like PS1 and PS2 which are discussed in the next section.

PS1 and PS2 Variables

The characters that the shell displays as your command prompt are stored in the
variable PS1. You can change this variable to be anything you want. As soon as you
change it, it'll be used by the shell from that point on.

For example, if you issued the command -

$PS1="=>"
=>
=>
=>

Your prompt will become =>. To set the value of PS1 so that it shows the working
directory, issue the command -

=>PS1="lu@\h \W]\$"
[root@ip-72-167-112-17 /var/wwwi/tutorialspoint/unix]$
[root@ip-72-167-112-17 /var/wwwi/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's username, the
machine's name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value arguments for
PS1; try to limit yourself to the most critical so that the prompt does not overwhelm you
with information.

Sr.No. Escape Sequence & Description

61

\t
Current time, expressed as HH:MM:SS

\d

Current date, expressed as Weekday Month Date

\n

Newline

\s

Current shell environment

\W
Working directory

\w

Full path of the working directory

\u

Current user’s username

\h

Hostname of the current machine

\i#

Command number of the current command. Increases when a new command is
entered

\$

If the effective UID is O (that is, if you are logged in as root), end the prompt with
the # character; otherwise, use the $ sign

62

You can make the change yourself every time you log in, or you can have the change
made automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary
prompt and wait for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-
defining the PS2 shell variable -

Following is the example which uses the default secondary prompt -

$ echo "this is a
> test"”

this is a

test

$

The example given below re-defines PS2 with a customized prompt -

$ PS2="secondary prompt->"
$ echo "this is a

secondary prompt->test"
thisis a

test

$

Environment Variables

Following is the partial list of important environment variables. These variables are set
and accessed as mentioned below -

Sr.No. Variable & Description

DISPLAY
Contains the identifier for the display that X11 programs should use by default.

2 HOME
Indicates the home directory of the current user: the default argument for the
cd built-in command.

3

IFS

Indicates the Internal Field Separator that is used by the parser for word
splitting after expansion.

63

10

11

12

LANG

LANG expands to the default system locale; LC_ALL can be used to override
this. For example, if its value is pt_BR, then the language is set to (Brazilian)
Portuguese and the locale to Brazil.

LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colonseparated list of directories
that the dynamic linker should search for shared objects when building a process
image after exec, before searching in any other directories.

PATH

Indicates the search path for commands. It is a colon-separated list of directories
in which the shell looks for commands.

PWD

Indicates the current working directory as set by the cd command.

RANDOM

Generates a random integer between 0 and 32,767 each time it is referenced.

SHLVL

Increments by one each time an instance of bash is started. This variable is
useful for determining whether the built-in exit command ends the current
session.

TERM
Refers to the display type.

TZ

Refers to Time zone. It can take values like GMT, AST, etc.

uiD

Expands to the numeric user ID of the current user, initialized at the shell startup.

64

Following is the sample example showing few environment variables -

$ echo $HOME
/root
]$ echo $DISPLAY

$ echo $TERM

xterm

$ echo $PATH
{usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin
$

Integer arithmetic and string Manipulation

The expression $(($OPTIND - 1)) in the last example gives a clue as to how the shell
can do integer arithmetic. As you might guess, the shell interprets words surrounded
by $((and)) as arithmetic expressions. Variables in arithmetic expressions do not need
to be preceded by dollar signs, though it is not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and
command substitutions. We're finally in a position to state the definitive rule about
guoting strings: When in doubt, enclose a string in single quotes, unless it contains
tildes or any expression involving a dollar sign, in which case you should use double
quotes.

For example, the date(1) command on System V-derived versions of UNIX accepts
arguments that tell it how to format its output. The argument +%; tells it to print the day
of the year, i.e., the number of days since December 31st of the previous year.

We can use +%;j to print a little holiday anticipation message:
print "Only $(((365-$(date +%)j)) / 7)) weeks until the New Year!"

We'll show where this fits in the overall scheme of command-line processing in Chapter
7, Input/Output and Command-line Processing.

The arithmetic expression feature is built in to the Korn shell's syntax, and was available
in the Bourne shell (most versions) only through the external command expr(1). Thus it
is yet another example of a desirable feature provided by an external command (i.e., a
syntactic kludge) being better integrated into the shell. [[/]] and getopts are also
examples of this design trend.

Korn shell arithmetic expressions are equivalent to their counterparts in the C language.

[5] Precedence and associativity are the same as in C. Table 6.2 shows the arithmetic
operators that are supported. Although some of these are (or contain) special

65

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-1

characters, there is no need to backslash-escape them, because they are within
the $((...)) syntax.

[5] The assignment forms of these operators are also permitted. For example, $((x +=
2)) adds 2 to x and stores the result back in x.

Table 6.2: Arithmetic Operators

Operator Meaning

+ Plus

- Minus

* Times

/ Division (with truncation)
% Remainder

<< Bit-shift left

>> Bit-shift right

& Bitwise and

| Bitwise or

~ Bitwise not

N Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syntax
also (like C) supports relational operators as "truth values" of 1 for true and O for
false. Table 6.3 shows the relational operators and the logical operators that can be
used to combine relational expressions.

Table 6.3: Relational Operators
Operator Meaning

< Less than

66

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-2

Table 6.3: Relational Operators

Operator Meaning

> Greater than

<= Less than or equal
>= Greater than or equal
== Equal

I= Not equal

&& Logical and

Il Logical or

For example, $((3 > 2)) has the value 1; $(((3> 2) || (4 <=1))) also has the value 1,
since at least one of the two subexpressions is true.

The shell also supports base N numbers, where N can be up to 36. The
notation B#N means "N base B". Of course, if you omit the B#, the base defaults to 10.

6.2.1 Arithmetic Conditionals

Another construct, closely related to $((...)), is ((...)) (without the leading dollar sign). We
use this for evaluating arithmetic condition tests, just as [[...]] is used for string, file
attribute, and other types of tests.

((...)) evaluates relational operators differently from $((...)) so that you can use it

in if and while constructs. Instead of producing a textual result, it just sets its exit status
according to the truth of the expression: 0 if true, 1 otherwise. So, for example, ((3 >

2)) produces exit status 0, asdoes (((3>2) || (4<=1))),but (((3>2) && (4<=1)

)) has exit status 1 since the second subexpression isn't true.

You can also use numerical values for truth values within this construct. It's like the
analogous concept in C, which means that it's somewhat counterintuitive to non-C
programmers: a value of 0 means false (i.e., returns exit status 1), and a non-0 value
means true (returns exit status 0), e.qg., ((14)) is true. See the code for

the kshdb debugger in Chapter 9 for two more examples of this.

6.2.2 Arithmetic Variables and Assignment

67

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch09_01.htm

The ((...)) construct can also be used to define integer variables and assign values to
them. The statement:

((intvar=expression))

creates the integer variable intvar (if it doesn't already exist) and assigns to it the result
of expression.

That syntax isn't intuitive, so the shell provides a better equivalent: the built-in
command let. The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression

with $((and)) in a let statement. As with any variable assignment, there must not be
any space on either side of the equal sign (=). It is good practice to surround
expressions with quotes, since many characters are treated as special by the shell
(e.g., *, #, and parentheses); furthermore, you must quote expressions that include
whitespace (spaces or TABs). See Table 6.4 for examples.

Table 6.4: Sample Integer Expression Assignments

Assignment Value
let x= $x
1+4 5
1+ 4 5
'(2+3) * 5' 25
2+3*5 17
'17/3 5
17 % 3' 2
'1<<4' 16
'48>>3' 6
17 & 3' 1

68

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-3

Table 6.4: Sample Integer Expression Assignments

Assignment Value
let x= $x
‘1713 19
1773 18

Here is a small task that makes use of integer arithmetic.

Task 6.1

Write a script called pages that, given the name of a text file, tells how many pages of
output it contains. Assume that there are 66 lines to a page but provide an option
allowing the user to override that.

We'll make our option -N, a la head. The syntax for this single option is so simple that
we need not bother with getopts. Here is the code:

if [$1 = -+([0-9])]]; then
let page_lines=${1#-}
shift

else
let page_lines=66

fi

let file_lines="$(wc -l < $1)"

let pages=file_lines/page_lines

if ((file_lines % page_lines > 0)); then
let pages=pages+1

fi

print "$1 has $pages pages of text."

Notice that we use the integer conditional ((file_lines % page_lines > 0)) rather than
the [[...]] form.

At the heart of this code is the UNIX utility wc(1), which counts the number of lines,
words, and characters (bytes) in its input. By default, its output looks something like this:

8 34 161 bob

69

wc's output means that the file bob has 8 lines, 34 words, and 161
characters. wc recognizes the options -I, -w, and -c, which tell it to print only the number
of lines, words, or characters, respectively.

wc normally prints the name of its input file (given as argument). Since we want only the
number of lines, we have to do two things. First, we give it input from file redirection
instead, as in wc -l < bob instead of wc -l bob. This produces the number of lines
preceded by a single space (which would normally separate the filename from the
number).

Unfortunately, that space complicates matters: the statement let file_lines=$(wc - <
$1) becomes "let file_lines= N" after command substitution; the space after the equal
sign is an error. That leads to the second modification, the quotes around the command
substitution expression. The statement let file_lines=" N" is perfectly legal,

and let knows how to remove the leading space.

The first if clause in the pages script checks for an option and, if it was given, strips the
dash (-) off and assigns it to the variable page_lines. wc in the command substitution
expression returns the number of lines in the file whose name is given as argument.

The next group of lines calculates the number of pages and, if there is a remainder after
the division, adds 1. Finally, the appropriate message is printed.

As a bigger example of integer arithmetic, we will complete our emulation of the C
shell's pushd and popd functions (Task 4-8). Remember that these functions operate
on DIRSTACK, a stack of directories represented as a string with the directory names
separated by spaces. The C shell's pushd and popd take additional types of arguments,
which are:

e pushd +n takes the nth directory in the stack (starting with 0), rotates it to the
top, and cds to it.

e pushd without arguments, instead of complaining, swaps the two top directories
on the stack and cds to the new top.

e popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the nth directory in the stack.
Here are the latest versions of both functions:

function pushd { # push current directory onto stack
dirname=%$1
if [-d $dirname && -x $dirname JJ; then
cd $dirname
DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
print "$DIRSTACK"
else
print "still in $PWD."

70

fi
}

function popd { # pop directory off the stack, cd to new top
if [-n $DIRSTACK]]; then
DIRSTACK=${DIRSTACK#* }
cd ${DIRSTACK%% *}
print "$PWD"
else
print "stack empty, still in $PWD."
fi

}

To get at the nth directory, we use a while loop that transfers the top directory to a
temporary copy of the stack n times. We'll put the loop into a function
called getNdirs that looks like this:

function getNdirs{

stackfront="

let count=0

while ((count < $1)); do
stackfront="$stackfront ${DIRSTACK%% *}"
DIRSTACK=3${DIRSTACK#* }
let count=count+1

done

}

The argument passed to getNdirs is the n in question. The variable stackfront is the
temporary copy that will contain the first n directories when the loop is

done. stackfront starts as null; count, which counts the number of loop iterations,
starts as 0.

The first line of the loop body appends the top of the stack (${DIRSTACK %% *})

to stackfront; the second line deletes the top from the stack. The last line increments
the counter for the next iteration. The entire loop executes N times, for values

of count from O to N-1.

When the loop finishes, the last directory in $stackfront is the Nth directory. The
expression ${stackfront##* } extracts this directory. Furthermore, DIRSTACK now
contains the "back" of the stack, i.e., the stack without the first n directories. With this in
mind, we can now write the code for the improved versions of pushd and popd:

function pushd {
if [[$1 = ++([0-9])]]; then
case of pushd +n: rotate n-th directory to top
let num=${1#+}

71

getNdirs $num

newtop=${stackfront##* }
stackfront=${stackfront%$newtop}

DIRSTACK="$newtop $stackfront $DIRSTACK"
cd $newtop

elif [-z $1]]; then
case of pushd without args; swap top two directories
firstdir=${DIRSTACK%% *}
DIRSTACK=${DIRSTACK#* }
seconddir=${DIRSTACK%% *}
DIRSTACK=${DIRSTACK#* }
DIRSTACK="$seconddir $firstdir $DIRSTACK"
cd $seconddir

else
cd $dirname
normal case of pushd dirname
dirname=%$1
if [-d $dirname && -x $dirname]J; then
DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
print "$DIRSTACK"
else
print still in "$PWD."
fi
fi
}

function popd { # pop directory off the stack, cd to new top
if [[$1 = ++([0-9])]]; then
case of popd +n: delete n-th directory from stack
let num={$1#+}
getNdirs $num
stackfront=${stackfront% *}
DIRSTACK="$stackfront $DIRSTACK"

else
normal case of popd without argument
if [-n $DIRSTACK]]; then
DIRSTACK=${DIRSTACK#* }
cd ${DIRSTACK%% *}
print "$PWD"
else
print "stack empty, still in $PWD."

72

f
fi
}

These functions have grown rather large; let's look at them in turn. The if at the
beginning of pushd checks if the first argument is an option of the form +N. If so, the first
body of code is run. The first let simply strips the plus sign (+) from the argument and
assigns the result - as an integer - to the variable num. This, in turn, is passed to

the getNdirs function.

The next two assignment statements set newtop to the Nth directory - i.e., the last
directory in $stackfront - and delete that directory from stackfront. The final two lines
in this part of pushd put the stack back together again in the appropriate order and cd to
the new top directory.

The elif clause tests for no argument, in which case pushd should swap the top two
directories on the stack. The first four lines of this clause assign the top two directories
to firstdir and seconddir, and delete these from the stack. Then, as above, the code
puts the stack back together in the new order and cds to the new top directory.

The else clause corresponds to the usual case, where the user supplies a directory
name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means
delete the Nth directory. A let extracts the N as an integer; the getNdirs function puts
the first n directories into stackfront. Then the

line stackfront=${stackfront% *} deletes the last directory (the Nth directory)

from stackfront. Finally, the stack is put back together with the Nth directory missing.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your
understanding of this code:

1. Add code to pushd that exits with an error message if the user supplies no
argument and the stack contains fewer than two directories.

2. Verify that when the user specifies +N and N exceeds the number of directories
in the stack, both pushd and popd use the last directory as the Nth directory.

3. Modify the getNdirs function so that it checks for the above condition and exits
with an appropriate error message if true.

4. Change getNdirs so that it uses cut (with command substitution), instead of

the while loop, to extract the first N directories. This uses less code but runs
more slowly because of the extra processes generated.

73

Special command line characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-
meaning, then we refer to it as a special character. Along with commands
and keywords, special characters are building blocks of Bash scripts.

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments
and will not be executed.

This line is a comment.
Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
" Note whitespace before

Comments may also follow whitespace at the beginning of a line.
A tab precedes this comment.
Comments may even be embedded within a pipe.

initial=(“cat "$startfile" | sed -e '/#/d" | tr -d \n' |\

Delete lines containing '#' comment character.
sed-e's\\./g'-e'sl | _Ig")

Excerpted from life.sh script

A command may not follow a comment on the same line. There is no
method of terminating the comment, in order for "live code" to begin on
the same line. Use a new line for the next command.

Of course, a quoted or an escaped # in an echo statement does not begin
a comment. Likewise, a # appears in certain parameter-substitution
constructs and in numerical constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.’

echo The \# here does not begin a comment.

echo The # here begins a comment.

74

https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/sha-bang.html#MAGNUMREF
https://tldp.org/LDP/abs/html/special-chars.html#WHITESPACEREF
https://tldp.org/LDP/abs/html/special-chars.html#PIPEREF
https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/escapingsection.html#ESCP
https://tldp.org/LDP/abs/html/internal.html#ECHOREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tl